

Vibration Isolation and Structural Control Technology for NGST

Dr. T. Tupper Hyde Honeywell Space Systems

NGST Technology Challenge July 8-10, 1997

Isolation & Structural Control Technology for NGST

Control Structures Technology

Contributors to the Problem

	Contributing Component	Potential Solution
•	RWA Induced Vibration Slew Disturbances Sun Shade/ SA Modes Lightly Damped Structure Gimbal Motor Induced Vibration Payload Modes Thermal gradients Cryocoolers	Input Isolation Command Shaping /Damped Structure Damped Structure/ TMDs Integral Damping Disturbance Isolation Payload damping Active Optical Control Force Suppression
	-	

Honeywell

Vibration Problems and Solutions

Problem:	Acquercy Description	Solution Product Applicatio	n
A "few" appendage modes		Honeywell Tuned Mass Damper	
Many structural resonances		Honeywell D-Strut TM Structural Damper	
High frequency base motion		Honeywell D-Strut [™] Passive Viscous Isolator	
Payload disturbance and pointing, low frequency base motion	1.	Honeywell Hybrid D-Strut™ Vibration Isolation, Suppression and Steering System (VISS)	
Launch induced vibrations on entire spacecraft		Honeywell Launch Vehicle Isolation System	

(LVIS)

Jitter is a System Problem

D-StrutTM Viscous Isolation System Features

- High load capacity
- Linear performance over large dynamic range (10⁵)
- Offers very high and adjustable damping rates
- Functions at ultra low vibration levels (50NM)
- Predictable performance
- Stiffness independent of Damping Coefficient
- Low temperature sensitivity compared to viscoelastic systems
- Long life free of any wear mechanisms
- Hermetic seal eliminates outgassing
- Basic features qualified for HST, Shuttle launch, DSP
- Low space application cost

Vibration Isolation and Steering (VISS) System

• Payload Weight: 33 lb.

• Payload Size: approx. 10 in dia. by 25 in. long

• System Weight (incl. 14lb electronics): 34 lb.

• Bus Voltage: 28 VDC

• Peak Power: 50W

• Length of Strut: 8 in.

• Actuator Force: 2 lb.

Applications

- Optical equipment isolation
- Optical equipment precision pointing
- Jitter suppression
- Output Isolation

Background and Performance

- Isolation > 20 dB for freq. > 5 Hz
- Dynamic Steering + 0.3 deg with accuracy of 0.02 deg.
- Suppression : > 20 dB for fundamental and first cryocooler harmonics (55 and 110 Hz)
- Undergoing Bench Tests at Phillips Lab
- Scheduled for Flight on STRV-2 in 1998

MWIR

6-axis Hexapod VISS

Experimental VISS Results

6-axis Hexapod VISS Mounted to Optical Bench with Induced Base Disturbance

Honeywell

Structural Control Testbed

Passive Structural Control

- D-Struts™
- Tuned Mass Dampers (TMD)

Active Structural Control

- Hybrid D-Struts™
- Proof Mass Actuators

Precision Payload Isolation and Pointing

- VISS Hexapod
- Two-Axis Gimbal
- Inertially Stabilized Bench

Representative Flexible Bus Structure

Attitude Control

- RWA/CMG's
- Momentum Systems
- Honeywell IMU's

Input Isolation

- Isolated RWA/CMG's
- Isolated Momentum Array
- SAD IV Reduction

Structural ID/Control

- Autonomous Identification
- Command Input Shaping
- Modern Control

Precision Agile Spacecraft System Problem

Satellite Launch Isolation

LVIS Launch Isolator

- Isolation System Weight: 19 lb. (47 current)
- Static Stiffness = 3970 lb/in.
- Cross-Link Stiffness = 400,000 lb/in.
- Damping: 107 lb-sec/in.
- Quasi-Static Load: 7500 lbs.
- Max Cross-Link Load: 4000 lbs.

Heavy Load Pneumatic Isolator

Applications

- Launch load isolation
- Airborne Bench Isolation
- Heavy Load Isolation

Experience and Capabilities

- D-StrutTM Three Parameter Passive Isolation products offer a low cost and proven approach to damping and vibration attenuation
- Honeywell has applied D-StrutTM isolation systems to Hubble Space Telescope and several other "real-world" spacecraft
- The active/passive Vibration Isolation and Steering System (VISS) has shown excellent test results for payload isolation.
- Launch load isolation systems using the LVIS isolation system have been shown to reduce both axial and lateral vibrations.
- Honeywell is currently integrating hybrid active/passive products and other new structural control technologies into an integrated testbed for fast slewing and settling of spacecraft systems
- Modeling techniques are being correlated to full scale test results for the integrated design of satellite structural control systems, discrete isolator placement and launch isolation

Honeywell

HST RWA Induced Vibration

Hardmount

ppt 17

SIM

RWA Isolation

- 20 Hz, three parameter passive isolation
- Active isolation w/ first four harmonics -20dB

Stochastic Broadband Radial Forces [0,3000 rpm]

NGST

SIM

SIM Classic Dist. to Perf.

